Shape Particle Filtering for Image Segmentation

نویسندگان

  • Marleen de Bruijne
  • Mads Nielsen
چکیده

Deformable template models are valuable tools in medical image segmentation. Current methods elegantly incorporate global shape and appearance, but can not cope with localized appearance variations and rely on an assumption of Gaussian gray value distribution. Furthermore, initialization near the optimal solution is required. We propose a maximum likelihood shape inference that is based on pixel classification, so that local and non-linear intensity variations are dealt with naturally, while a global shape model ensures a consistent segmentation. Optimization by stochastic sampling removes the need for accurate initialization. The method is demonstrated on three different medical image segmentation problems: vertebra segmentation in spine radiographs, lung field segmentation in thorax X rays, and delineation of the myocardium of the left ventricle in MRI slices. Accurate results were obtained in all tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Static SMC Sampler on Shapes for the Automated Segmentation of Aortic Calcifications

In this paper, we propose a sampling-based shape segmentation method that builds upon a global shape and a local appearance model. It is suited for challenging problems where there is high uncertainty about the correct solution due to a low signal-to-noise ratio, clutter, occlusions or an erroneous model. Our method suits for segmentation tasks where the number of objects is not known a priori,...

متن کامل

Automatic Region Template Generation for Shape Particle Filtering based Image Segmentation

Segmentation approaches based on sequential Monte Carlo Methods deliver promising results for the localization and delineation of anatomical structures in medical images. Also known as Shape Particle Filters, they are used for the segmentation of human vertebræ, lungs and hearts, and are especially well suited to cope with the high levels of noise encountered in MR data and overlapping structur...

متن کامل

A Pixon-based Image Segmentation Method Considering Textural Characteristics of Image

Image segmentation is an essential and critical process in image processing and pattern recognition. In this paper we proposed a textured-based method to segment an input image into regions. In our method an entropy-based textured map of image is extracted, followed by an histogram equalization step to discriminate different regions. Then with the aim of eliminating unnecessary details and achi...

متن کامل

Identifying the Defects in Glass Bottles Using Particle Swarm Optimization

This paper aims at designing and developing a suitable tool for identifying defects in glass bottles through visual inspection based on segmentation algorithm. Defects are identified in three stages namely Image acquisition, Pre-processing and filtering and Segmentation. In the Image acquisition stage, samples of real time images are taken and are converted into monochrome images. In the Pre-pr...

متن کامل

Modified CLPSO-based fuzzy classification System: Color Image Segmentation

Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004